
Journal of Applied Mechanics and Technical Physics, VoL 40, No. 4, 1999 

G E N E R A T I O N  OF G E O M A G N E T I C  OSCILLATIONS 

IN T H E  LATE S T A G E  OF A C A M O U F L E T  E X P L O S I O N  

L. P. G orbachev ,  Yu.  B.  Kotov ,  1 and T. A. Semenova  UDC 550.385.37 

Generation of geomagnetic disturbances is studied at the late stage of an underground nuclear 
explosion, where the originally displaced geomagnetic field penetrates into the explosion cavity 
again. The strength of the electric field of a geomagnetic disturbance due to oscillations of the 
magnetic moment is calculated. A method for analyzing records of geomagnetic disturbances is 
developed that permits one to take into account the character of quasiperiodic oscillations in 
the signal. The calculations are compared to results of the experiments performed in the state 
of Nevada in 1958. 

All the papers devoted to examination of geomagnetic disturbances from underground nuclear 
explosions (see, e.g., [i-4]) have been focused on the main portion of the signal, which is a two-polar pulse 
with a rather short positive phase and a lengthy, asymptotically vanishing, negative phase. The ratio of the 
durations of these phases is about 1 : 10. The experimental curves from [1, 5] suggest that many geomagnetic 
disturbances are terminated by a quasiperiodic process. The amplitude of these oscillations is much smaller 
than the amplitude of the initiM phase of the signal, but in many experimental records, oscillations can be 
distinguished with confidence against the noise background. In the present paper, the processes occurring in 
the explosion cavity in the late stages of explosion are considered and the dependence of the frequency period 
of geomagnetic disturbances at the pulse "tail" on the explosion characteristics is established. 

In practice, two cases of explosion occur, which are considered, for example, by Chadwick et al. [6] and 
Brode [7]. 

1. Before an explosion, the charge is tightly surrounded by rock [6]. During the explosion, the rock 
evaporates, and a shock wave propagates and damps in ground. A cavity forms around the charge, and the 
walls of the cavity move, producing a rarefaction wave. 

2. An explosion is produced in a chamber of large dimensions (decoupling) to decrease the seismic 
effect [7] prepared beforehand. The shock wave is locked in the cavity and undergoes multiple reflections from 
the practically immovable walls of the chamber. 

Below, we consider the first case of explosion in a continuous medium. 
A physical concept for generation of geomagnetic disturbances from underground nuclear explosions 

has not yet been developed. In [1], different models for generation of geomagnetic disturbances are discussed, 
and it is shown that the main mechanisms involved in the formation of low-frequency signals are displacement 
of the geomagnetic field from the hot expanded plasma ball and appearance of a magnetic dipole moment 
of the ball. Despite the great number of works in this field, the problem of generation of electromagnetic 
fields by expansion of a plasma ball with high electrical conductivity in a conducting magnetized nonuniform 
medium (ground) in the presence of the ground-air boundary has not been solved rigorously. Researchers 
who attempted to solve this problem using various simplifications did not obtain definite relations between 
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the time characteristics of disturbances and the source parameters. Therefore, we chose another approach to 
developing a physical concept of the phenomenon. 

Our concept is based on the assumption that the plasma formed in explosion has a time-varying 
magnetic dipole moment M(t). Let, at the moment of explosion, there be evaporation of the rock surrounding 
the nuclear charge. The hot, completely ionized gas expands, separating the  chamber wails. At the initial 
stage of the expansion, where the temperature and electrical conductivity of the plasma are very high, the 
magnetic field is displaced from the site of explosion. The ring currents originating on the surface of the 
fire ball produce a magnetic moment,  which rapidly increases with expansion. A rarefaction wave propagates 
into the plasma from the chamber walls, which move apart. The wave is cumulated at the center of the 
spherical cavity, reflected from it, and travels to the walls again. This process occurs many times, and the 
wave speed depends on the gas pressure and density. At the early stages, the radial motion of the plasma 
proceeds in a wave region that  is free from the magnetic field, and, hence, this does not lead to modulation of 
the magnetic moment of the plasma ball. At the tare stages, where the expansion slows down, the ball cools 
and reverse diffusion of the geomagnetic field into the ball begins (or, because of the plasma instability, the 
plasma formation breaks up). These processes lead to a gradual decrease in the magnetic moment,  and the 
rate of the decrease depends on the mechanisms whereby the geomagnetic field penetrates into the cavity. 
By this time, the rate of expansion of the cavity is much lower than the velocity of sound, and the process 
of expansion can be considered quasistatic. A standing sound wave is established in the spherical cavity. The 
velocity direction of the gas particles in the wave is periodically changed, and this gives rise to alternating 
oscillating currents in the plasma volume and oscillations of the magnetic moment .  

Thus, there are two mechanisms of generation of geomagnetic disturbances, and they operate at 
different stages of explosion. Initially, there is a sudden burst of radiation due to the rapid displacement 
of the magnetic field from the explosion region, and then the burst relaxes because of the cooling of the 
plasma. The splash is followed by more or less regular oscillations of the magnetic moment of the plasma in 
its radial motion caused by the standing wave. The initial stage of the explosion is examined in [1-4]. In the 
present paper, we examine only the late stage of the explosion. 

Let us consider, for simplicity, a vertical geomagnetic field. We introduce a spherical coordinate system 
where the Z axis is directed along the geomagnetic field and the coordinate origin is at the center of the 
explosion. 

We calculate the magnetic moment of the plasma in the explosion cavity in the late stage. Let the 
walls of the cavity expand at the late stage of explosion by the law 

u(t) = dR ( t - t 1 . )  
d'-T = V1 exp T ' (1) 

where r is the characteristic time of expansion of the cavity, V1 is the rate of expansion at time t = tl,  from 
which approximation (1) is considered valid, and R is the radius of the cavity. We begin timing with t = ta, 
by setting tl = 0. 

Since the velocity of sound a in the gas is much higher than the velocity of the cavity walls, astanding 
wave arises in the cavity before the dimensions of the cavity are significantly changed (a >> dR/dt). The wave 
equation for the velocity potential V = V~ has the form 02~/Ot 2 = a2A~. We seek its solution in the form 
of a monochromatic wave: 

A 
= -- sin (kr) exp (-iwt). (2) 

r 

Here k = w/a. Differentiating (2) with respect to r, we find the gas velocity in the wave propagating in the 
cavity: 

V = aexp(-iwt)[ kc~ si%kr)] 
r r 2 l "  (3)  

The gas velocity at the cavity wall is equal to the velocity of the wall (1). We represent it as the Fourier 
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integral 

where 

(:X) 

dR = u(t) = 1 f 
dW 

- - 0 0  

u~ exp (-iwt) d~, 

u,~ = / u(t)exp(iwt)dt  = i Vl e x p ( i w t -  t l r ) ~ t  = - V l  
iw - l i t "  

~ o o  0 

The  constant  A is determined from the condition that  for each monochromatic  component,  the gas 
velocity (3) at r = R(t) .~ Ro is equal to u~ exp (- iwt) .  Then,  

A[kCos(kRo) sin (kR0)] 1/1 
L R0 ~ J -  - 1 / , + i ~ '  

R0 ~ 
A = - 1 / r  + iw kRo cos(kR0) - sin (kR0)'  (4) 

whence 

where R0 is the  maximum radius of the cavity. 
Using (3) and (4), by inverse Fourier t ransformation we obtain the gas velocity in the cavity related 

to the mot ion  of the wall at the  final stage of the expansion: 

R 2 [r exp( - iwt ) [krcos(kr ) - s in (kr )]  dw 
V(t ,r)  (5) 7 J (i~= ~ ~ ( k - N 0 )  -';Tn(Th0)l 2-7" 

We calculate integral (5) using the calculus of residues. The denominator of integrand (5) vanishes for 
w = 1~(iv) and tan (kRo) = kRo. The min imum root of the  last equation is koRo .~ 4.5. Hence, one value of 
the frequency is Wl = 4.5a/Ro = wo and the other (negative) value is w2 = -4.5a/Ro = -wo. The influence 
of overtones is ignored. In this case, from (5) subject to the  condition wor = 4.5ar/Ro >> 1, we obtain 

Y(t, r ) = - V 1  R2~ r / (ar )cosh(r / (ar ) ) - s inh(r / (ar ) )  
~"  Ro/(ar)cosh (Ro/(ar)) - sinh (Ro/(ar)) exp ( - t / r )  

+2v1 k0~ cos (k0~) - sin (k0~) 
k02r 2 sin (koRo) cos (wot). (6) 

For t > 7, expression (6) contains only the second term, which describes a standing wave with the 
fundamenta l  frequency. Because of the dissipative processes, the standing wave damps with time. The damping 
is taken into account by introducing the coefficient fl tha t  satisfies the inequality fl << l/T, so that after a 
lapse of t ime  t = r,  the gas oscillations in the standing wave continue. We take the moment  t2 > T as the 
reference t ime.  Then, we have 

k0r cos (k0r) - sin (k0r) 
V(t, r) = 21/1 k2r 2 sin (koRo) exp ( - f i t )  sin (wot). (7) 

We find the magnetic momen t  due to the plasma motion under the action of the standing wave. Let 
the plasma conductivi ty be equal to crp. The gas is in magnet ic  field B. Then, the ring electric currents have 
the form j~ = apBV(r, t) sin 8 and the magnetic momen t  is 

~/2 Ro 

M(t) = 2~ ] f j~r 3 sin2OdrdO 
0 0 

7r/2 /~o o.pr 3 
= 4~rBV1 e x p ( - f l t ) s i n  (wot) f sin a OdO i k2r2 [korcos(kor)-sin(kor)]dr. 

sin ( koRo ) 0 
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We assume that  ap depends only on time. Then, calculating the integrals and taking into account that 
k0R0 = 4.5 and tan(k0R0) = koRo, we obtain 

M(t) = 0.38apBV1n04 exp ( - f t )  sin (wot). (8) 

Expression (8) is valid only for times when the magnetic field B has penetrated into the cavity. Assume, 
at time t = t2, that  the geomagnetic field has penetrated into the cavity. From this moment, the conductivity 
ap is considered constant. The magnetic moment  is written as 

/ /14o exp (-fit)  sin (wot) for t ) O, 
M(t) 

I 0 for t < 0 ,  

where Mo = 0.38apBV1R 4. The time t2 was previously set equal to zero. 
The magnetic moment M(t) depends on the velocity ~ of motion of the spherical wall of the cavity. If 

there is no motion, magnetic moment is absent since in the mechanism considered only motion of the cavity 
walls produces an acoustic standing wave. We represent M(t) as a Fourier integral 

C2~ 1/ 
M(t) = ~ M~exp(- iwt)dw,  

- - 0 0  

where 
OO CO 

= ~ / M(t)exp(iwt)dt = Mo J e x p ( - f t  + iwt)sin(w0t) dt. M~ 
- - o o  0 

Integrating and assuming that f << w0, we obtain M~ - Mowo/(w 2 - w  2 -  2if  w). Let us calculate the electric- 
field strength of geomagnetic disturbances. Because of the high conductivity of ground and the low frequency 
(about a hertz and fractions of a hertz) of the disturbances considered, we ignore displacement currents. If 
the geomagnetic field is vertical, the conductivity currents have a ring shape (the geomagnetic line passing 
through the point of explosion is the symmetry axis), are located in planes that are coplanar to the planar 
ground-air interface, and exist only in a conducting medium. From the Maxwell equations [VH] = j and 
[VE] = -OB/Ot  = -#oH/Ot ,  we obtain [V[VE]] = -#oOj/Ot and V(VE)  - A E  = -#oOj/Ot. 

We supplement the Maxwell equations by the Ohm's law j = a E ,  where (r is the conductivity of 
ground. Taking into account that the currents are closed and there is no separation of electric charges, i.e., 
V j  = 0, we obtain the following equation for the current density: 

A j  = ~oaOj/Ot. (9) 

Equation (9) is a diffusion equation, and, hence, one can speak of diffusion of electric currents in a 
conducting medium. 

In the case of the vertical geomagnetic field, there is only one azimuthal component of the current 
density Jr,  for which the equation in spherical coordinates has the form 

1 0 r20j  v 1 0 OJv J ~  OJv (10) 
r 2 Or ~r  +r 2sinO00 sin0 00 r 2sin 20 = # ~  0t" 

Khanakhbei [8] showed that  under certain conditions, which will be formulated below, the fields generated in 
air by a magnetic dipole immersed in ground have little effect on the electric currents in ground. This make 
it possible to solve the problem of the diffusion of currents in a conducting medium ignoring the dielectric 
properties of air. According to the aforesaid, we seek a solution in the form 

j~ = sin 0 exp (- iwt)f(r) .  (11) 

Substituting (11) into (10) and solving Eq. (10), we obtain 

f ( z )  1 + exp x ---- - -  , X = ( ~ a 0 o ' w ) l / 2 r ,  C = const. (12) 
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The calculations in [8] show that  at h/r ~ 0.1 (h is the depth of explosion) and x ~< 1, the presence of 
a dielectric half-space can change the field magnitude obtained from formula (12) by not more than 10%. At 
z = 1, the exponent  in (12) decreases by a factor of e compared to unity. The influence of the dielectric half- 
space on the fields in ground increases with increase in z. However, since the function f ( z )  rapidly decreases, 
solution (12) can be extended to the entire space of the variable x. 

The constant  C is related to the magnetic moment by 

7r/2 oo o~ ~/2 oo 
27r o /sio  _- 

0 0 0 0 0 

where j ( r ,  ca) = f (x ) ,  and integration is performed over the volume in which currents are present. Using (12) 
and (13), we define the current density as 

j ( r , t )  M~176 ~ (tz~ iI/2 ( ~ )  
= 1 + exp ( - x / i  ]/2) dw. (14) 27r w 2 -- w 2 + 2i/3w x 

The integrand in expression (14) has two poles of the first order. To calculate the integral, we use the 
calculus of residues, introduce the parameter  x0 = (#o0.wor2) 1/2, and simplify the expression obtained, by 
setting/3 << w0. Then, the electric-field strength of geomagnetic disturbances is 

E(r,t) - j(r't-----~)0, v/2M~ exp ( -  ~t - ~2) [(1-~- 72xo) COS (O2ot- ~2) -sin (o3ot -- (15)  

The electric-field strength (15) has only an azimuthal component and is maximal,  according to (11), at 
angle 8 = 7r/2. If the depth of explosion is small compared to the distance at which the electromagnetic-field 
disturbances due to the explosion are recorded, maximal disturbances must be observed at ground. According 
to (15), the oscillation amplitude depends on the distance between the site of explosion and the point of 
observation by the law j ~ (x3 /r 4) exp (--xo/x/2 ) ~ r -1 exp [--r(ttOaWO)l/2 /V~  ] and decreases exponentially 
with distance. 

We est imate the distance at which the oscillation amplitude decreases by a factor of e (i.e., at x0 = 21/2 
or #o0.wor 2 = 2), for the "Gnome" explosion produced in salt beds. We set the conductivity of ground equal to 
0. ~ 1.7- 10 -2 C / m  [1]. The cyclical oscillation frequency w0 = 2~/To is taken from [9]. We calculate the wave 
speed a = (3"pip)l~2 = (3"RgT/M)I/2 (Rg is the universal gas constant, T is the gas temperature,  and M is 
the molar mass of the gas) at the final stage of expansion. We assume that at the final stage the temperature 
in the cavity is close to the melting point of salt: T ~ 1200 K. At the end of expansion of the cavity, the 
effective adiabatic exponent is 3' ~ 1.1. For the molar mass of NaC1 M = 58.5 kg/kmole, we obtain a ~ 440 
m/sec. The maximal radius R0 of the cavity calculated by comparing the rock pressure with the gas pressure 
in the cavity [9] is equal 20 m. As a result, we obtain r ~ 1 kin. 

To compare the theoretical results with experimental data, it is nec.essary to perform a careful 
independent analysis of experimental records of geomagnetic disturbances to establish correlations between 
the signal parameters  and the known characteristics of the source. The techniques we used to study 
magnetograms differ radically from the conventional Fourier methods of analyzing curves and considerably 
decrease the influence of high-frequency noise on the error in determining the required parameters. The 
material accumulated in a computer data  bank using these measuring techniques is subjected to mathematical 
processing by means of an application package [10-12]. This package is based on methods of nonparametric 
statistics and can work even with small samples. One method of processing magnetograms that is used to 
study the phase of a quasiperiodic signal is described below. 

The major i ty  of experimental records show oscillation processes that accompany the first burst of the 
signal. The oscillations are not strictly periodic but small segments of the process can be approximated by a 
sinusoid without a large error. In studies of such signals, it is convenient to use an approximating model of 
the form 

F(t) = cos (f(t)) + s(t), 
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where F(t) is the examined signal, f(t) is a monotonic function of time, and s(t) is the noise component of 
the signal. The approximation proposed above reduces investigation of the regular component of the signal to 
analysis of the function f(t), which will be called the conditional phase of the signal. In the presence of noise 
of a rather large amplitude, pointwise restoration of the function f(t) is difficult. However, even with intense 
noise, the neighborhoods of zeroes and extrema of the signal can be obtained rather reliably. Assigning the 
corresponding conditional values of the sinusoid phase (0, ~'/2, ~r, 37r/2, . . .) to the neighborhoods of zeroes 
and extrema, plotting the dependence of this phase on time, and approximating this plot by a smooth curve, 
one constructs a model for the regular part of the signal in the form cos(f (t)). From comparison of the 
model curve with the initial signal, it is possible to estimate the quality of the approximation and find the 
necessary systematic corrections. This procedure was performed with the records of the electrical component 
of geomagnetic disturbances in [1]. 

As an example, we give curves of the conditional phase for the "Bilby" explosion (Fig. 1). The record of 
the "Bilby" explosion contains the azimuthal E~, (Fig. la) and the radial Er (Fig. lb) components, which differ 
in the number of oscillations over the total period of recording the signal (about 1 sec). The first deviation 
of the azimuthal signal is positive, and that of the radial signal is negligible. Plots of the conditional phase 
versus time for these two records are given in Fig. lc. Squares show the values of the phase O = 7r, 3~r/2, . . .  
for the record of Er (curve 1), and circles show the values of ~ = 0, ~r/2, ~r, . . .  for E~ (curve 2). All extrema 
and zeroes of the azimuthal record are on a straight line, which corresponds to oscillations with constant 
frequency. The rate of growth of the conditional phase from the first minimum on the record of E~ to the 
nearest zero coincides with the growth rate of the phase in the latest stages of the signal (curve 1 in Fig. lc). 
Moreover, this rate is equal to the rate of variation in the phase of the azimuthal signal E~ (curve 2 in 
Fig. lc) since curves 1 and 2 in Fig. lc are practically parallel. The maxima and minima at the "tails" of 
both records (Fig. la  and b) are synchronous. If one assumes that the mechanisms of development of the initial 
and subsequent stages of the signal are different, the transition from one mechanism to the other in Fig. 1 
occurs approximately at 300 m/sec. This procedure of selecting a function to approximate the real signal 
was employed to determine the "periods" of oscillations in different records at the late stage of geomagnetic 
disturbances. These measurements were used to establish the relationship among the "period," the energy of 
explosion, and the depth of location of the charge. 

We study the dependence of the oscillation period on the energy of explosion and depth of location 
of the charge. According to (8), the oscillation period To depends on the speed of acoustic waves a and the 
maximum radius of the cavity Re. The radius Rc depends on the energy of explosion, the properties of rock, 
and the depth of location of the charge. The wave speed is determined by the pressure and density of the 
evaporated material in the cavity and, hence, on the properties of the rock and the depth of explosion. We use 
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the calculations of [9], where the state of heated gas in the cavity is studied at various stages of gas expansion. 
The calculations in [9] were carried out for various natural materials typical of the state of Nevada, where the 
underground nuclear explosions were conducted. We use records of the geomagnetic disturbances produced 
by these explosions. 

In [9], it is shown that  at the moment the formation of an explosion cavity is completed, the pressure pc 
in the cavity is directly proportional to the rock pressure at the depth of explosion pc = apgh ,  where h is the 
depth of location of the charge, p is the rock density averaged over the height h above the charge, and a is a 
constant of proportionality that  depends on the type of rock (a = 2.0 for salt and a = 1.4 for water-saturated 
tuff). Next, we assume that  the average density of rock is about the same. The final pressure in the cavity 
exceeds the rock pressure pgh  since the effective shear strength of the medium causes a counteraction to the 
enlargement of the cavity. When the cavity walls stop, the volume density of the evaporated material can 
defined as Pc = p o ( R , / R c )  3, where p0 is the density of the evaporated material at the moment of explosion 
and R v  is the radius of the cavity formed at the moment  the rock evaporates but expansion has not yet 
begun. Butkovich [9] reports the following values of R~ kt calculated per 1 kton for various natural materials, 
in particular, R~ kt = 1.83 m for granite, R~ kt = 2.06 m for water-saturated tuff, and R~ kt = 2.25 m for salt. 
The final radius of the cavity is Rc = Rlkt~'l/3c ~ , where q is the TNT equivalent of the explosion (in kilotons) 
and R~ kt is the final radius of the cavity for 1 kton. The relation between the Rlc kt and the final pressure pc 

in the cavity is obtained by approximating the graphs of pc(R~ kt) from [9], and it has the form 

R lkt = 1.80p/~ for salt; 
Rlc kt = 1.51pc ~ for water-saturated tuff. 

Substituting pc = apgh  into these expressions, we obtain the final radius of the cavity and the corresponding 
oscillation period: 

To = A l q l / 3 h  -~ for salt; (16) 
To = A 2 q l / 3 h  -~ for tuff 

(the numerical coefficients are not written here). 
To verify dependences (16), we analyzed the records of geomagnetic disturbances from [1, 5], for which 

both the depth and power of explosions are known. Figure 2 shows the plot of the oscillation period referred 
to the cube root from the TNT equivalent of explosion versus the depth of explosion to power -0.37. The 
measurement data are given for the three experiments: "Evans," "Gnome," and "Bilby," for which the TNT 
equivalents were 0.055, 3.1, and 235 ktons, and the depths were 256, 361, and 714 m, respectively. The points 
on the plot correspond to the periods evaluated from records of the azimuthal component of the disturbance, 
and the crosses correspond to the periods calculated from records of the radial component. Figure 3 shows 
the dependence of the quanti ty Toh ~ on the cube root of the TNT equivalent of explosion in the same 
experiments. Figures 2 and 3 demonstrate the directly proportional relation between the corresponding 
parameters, which is in good agreement with formula (16). 
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